ESE-833: Industrial Energy Management

Background

1. Industry energy management has become a widely accepted practice in various developed and developing world. It enables the industries and the economies to reduce their energy costs and associated greenhouse emissions while increasing the profits and market competitiveness. Industrial sector of Pakistan needs to adopt best practices in the field of energy management. It will help the country in reducing its reliance on imported energy resources e.g. oil and gas and increase its exports.

2. Rationale

- a. To equip the students with knowledge and expertise in the field of industry energy management
- b. To enable USPCASE to become leading educational institute with expertise in the field of industrial energy management

3. **Educational Objectives**

- a. Elaborate the fundamental concepts of energy management
- b. Discuss the best practices adopted in industry to achieve energy efficiency
- c. To prepare students to carryout research in the field of energy efficiency and management
- d. To develop necessary expertise and infrastructure in USCPASE to undertake industrial projects to improve energy efficiency and energy management

Input Obtained from Industry/Corporate Sector/Subject Specialists/Academia

- 4. The working paper has been sent to the following personals for their valuable feedback.
 - a. Dr. Rene Villalobos, Director Industrial Assessment Center (IAC), Arizona State University (ASU).
 - b. Dr. Irfan Mufti, Professor, Mechanical Engineering Department, UET Peshawar.
 - c. Muhammad Farooq, CEO Energy Saving Solutions, Lahore.

International Practice

4. Specify the universities of repute where the proposed course is being conducted.

- a. University of Maryland, USA
- b. New York Institute of Technology Vancouver Campus, Canada
- c. Royal Institute of Technology (KTH), Sweden

Proposed Timeframe of Commencement

6. Spring Semester 2019 (Elective course in MS degree programs in ESE, TEE and EP)

Course Contents

- 7. Give details of the course, on the following lines:
 - a. Course Code ESE-833
 - b. Title Industrial Energy Management
 - c. Credit Hours 3
 - d. Objectives
- 8. The objectives of this course are:
 - a. Elaborate the fundamental concepts of energy management
 - b. Learn the best practices adopted in industry to achieve energy efficiency
 - To prepare students to carryout research in the field of energy efficiency and management
 - d. To develop necessary expertise and infrastructure in USCPASE to undertake industrial projects to improve energy efficiency and energy management.

Outcomes

- 9. The course should enable students to:
 - a. Understand the importance of energy efficiency and energy management
 - b. Perform Industrial energy audits and identify energy conservation measures
 - c. Develop comprehensive energy management plan for an industry

10. Contents with suggested contact hours:

No	. Topics	Semeste	Contac
		r Weeks	t Hours
	Fundamentals of Energy Management	1 Week	3
	Introduction to Energy Management		

1.	Economic and Environmental Benefits		
	Energy Auditing	2 Weeks	6
	Types and Procedures of Energy Audits		
2.	Energy Audit Instruments		
	Economic Analysis and Life Cycle Costing	2 Weeks	6
	6. Present Value (PV), Future Value (FV) and Annual Value		
	(AV)		
3.	7. Net Present Worth (NPV)		
	8. Internal Rate of Return (IRR)		
	9. Life Cycle Costing (LCC)		
	Electrical Systems, Electric Motors and Drives	2 Weeks	9
	11. Single Phase and Three Phase AC Systems		
4.	12. Power Factor, Power Quality, Harmonics		
	13. Types of Electric Motors		
	14. Electric Motors Energy Management		
	Energy Efficient Buildings:	2 Weeks	6
5.	15. Building Envelope		
0.	16. HVAC Systems		
	17.Thermal Energy Storage		
	18. Maintenance and Building Commissioning		
	19. Building Automation and Controls		
6.	Boilers and Steam Systems		3
	 Boiler Rating Systems, Boiler Controls, Key Efficiency 		
	Issues		
	Combustion Nomograms		
	Common Energy Measures		
	Steam Distribution Systems		
	Energy Conservation Measures		
7	Compressed Air and Pump Systems	2 Weeks	6

	Compressed Air Usage and Major Areas of Waste		
	Leak Tables		
	Compressor Control Strategies and Energy Saving Ideas		
	Pump and System Curves		
	Energy Conservation Measures		
8.	8. CHP Systems and Renewable Energy		3
	Distributed Generation		
	 Combined Heat and Power (CHP) Design 		
	RE Technologies relevant to Industrial Applications		
	Net Metering		
9.	Financing, Performance Contracting, Measurement and Verification	1 Week	3
	Options for Financing		
	Performance Contracting and ESCOs		
	 Measurement and Verification (Baseline and Savings) 		
	 ASHRAE, US DoE and IPMVP Guidelines 		
10	Case Studies	1 Week	3
	Total	15	45
		Weeks	

11. Details of lab work, workshops practice (if applicable).No lab is required.

No	Title	Author	Туре
1.	Guide to Energy Management, 8th Edition	Barney L. Capehart , William	Reference
	- International Version , ISBN: 0-88173-	J. Kennedy, Wayne C.	Book
	773-9	Turner	
2.	Energy Management Handbook, 8th	Steve Doty, Wayne C. Turner	Reference

	Edition		Book
	ISBN: 0-88173-707-0		
3.	Handbook of Energy Engineering, 7th	Albert Thumann, P.E., C.E.M.	Reference
	Edition	and D. Paul Mehta, Ph.D.	Book
	ISBN: 0-88173-695-3		
4.	Energy Calculations & Problem Solving	Scott Dunning, Ph.D., P.E.,	Reference
	Sourcebook: A Practical Guide for the	C.E.M., and Larry Katz,	Book
	Certified Energy Manager Exam. ISBN: 0-	C.E.M., C.M.V.P.	
	88173-763-1		